
NagamaniAbirami.et. al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 3, (Part -4) March 2016, pp.125-130

125
 www.ijera.com 125 | P a g e

Resist Dictionary Attacks Using Password Based Protocols For

Authenticated Key Exchange

NagamaniAbirami
1
 ,Jagapriya R

2
, Kavipriya R

3
 , Nithya A

4

1
Assistant Professor , Department of Computer Science, Manakula Vinayagar Institute of Technology,

Pondicherry university, India.
2 , 3 , 4

B.Tech. ,Department of Computer Science, Manakula Vinayagar Institute of Technology, Pondicherry

university, India.

ABSTRACT
A parallel file system is a type of distributed file system that distributes file data across multiple servers and

provides for concurrent access by multiple tasks of a parallel application. In many to many communications or

multiple tasks, key establishments are a major problem in parallel file system. So we propose a variety of

authenticated key exchange protocols that are designed to address the above issue. In this paper, we also study

the password-based protocols for authenticated key exchange (AKE) to resist dictionary attacks. Password-based

protocols for authenticated key exchange (AKE) are designed to work to resist the use of passwords drawn from

a space so small that attacker might well specify, off line, all possible passwords. While many such protocols

have been suggested, the elemental theory has been lagging. We commence by interpreting a model for this

problem, to approach password guessing, forward secrecy, server compromise, and loss of session keys.

I. INTRODUCTION
 Both parallel and distributed systems can

be defined as a collection of processing elements

that communicate and cooperate to achieve a

common goal. Processor technology using

parallelism at all levels: within each CPU by

executing multiple instructions from different

threads of control simultaneously (simultaneous

multithreading); by introducing multiple cores in a

single chip (chip multiprocessors); by using multiple

chips to form multiprocessors; or via multiple

networked nodes to form a cluster; making parallel

systems increasingly ubiquitous.

Simultaneously, advances in networking

technology have created an explosion of distributed

applications, making distributed computing an

inherent fabric in our day-to-day lives. This course

will focus on the principles of parallel and

distributed systems and the implementation and

performance issues associated with them. We will

examine programming models/interfaces to

parallel and distributed computing, interprocess

communication, synchronization and consistency

models, fault tolerance and reliability, distributed

process management, parallel machine

architectures, parallel program optimization, and

the interaction of the compiler, run-time, and

machine architecture.

Difference between distributed system and

parallel system are given below:

 Distributed Operating systems are also referred

to as Loosely Coupled systems whereas

parallel processing systems are referred to as

loosely coupled systems.

 A Loosely coupled system is one in which the

processors do not share memory and each

processor has its own local memory whereas in

a tightly coupled system there is a single

system wide primary memory shared by all the

processors.

 The processors of distributed operating

systems can be placed far away from each

other to cover a wider geographic area which

is not the case with parallel processing

systems.

 The no. of processors that can be usefully

deployed is very small in a parallel processing

operating system whereas for a distributed

operating system a larger no. of processors can

be usefully deployed.

1.1 Distributed Computing

A distributed system is a network of

autonomous computers that communicate with

each other in order to achieve a goal. The

computers in a distributed system are independent

and do not physically share memory or processors.

They communicate with each other

using messages, pieces of information transferred

from one computer to another over a network.

Messages can communicate many things:

computers can tell other computers to execute a

procedures with particular arguments, they can

send and receive packets of data, or send signals

that tell other computers to behave a certain way.

RESEARCH ARTICLE OPEN ACCESS

NagamaniAbirami.et. al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 3, (Part -4) March 2016, pp.125-130

126
 www.ijera.com 126 | P a g e

Computers in a distributed system can have

different roles. A computer's role depends on the

goal of the system and the computer's own

hardware and software properties. There are two

predominant ways of organizing computers in a

distributed system. The first is the client-server

architecture, and the second is the peer-to-peer

architecture.

1.2 Parallel Computing

Computers get faster and faster every

year. In 1965, Intel co-founder Gordon Moore

made a prediction about how much faster

computers would get with time. Based on only five

data points, he extrapolated that the number of

transistors that could inexpensively be fit onto a

chip would double every two years. Almost 50

years later, his prediction, now called Moore's law,

remains startlingly accurate.

Despite this explosion in speed, computers

aren't able to keep up with the scale of data

becoming available. By some estimates, advances

in gene sequencing technology will make gene-

sequence data available more quickly than

processors are getting faster. In other words, for

genetic data, computers are become less and less

able to cope with the scale of processing problems

each year, even though the computers themselves

are getting faster.

To circumvent physical and mechanical

constraints on individual processor speed,

manufacturers are turning to another solution:

multiple processors. If two, or three, or more

processors are available, then many programs can

be executed more quickly. While one processor is

doing one aspect of some computation, others can

work on another. All of them can share the same

data, but the work will proceed in parallel.

In order to be able to work together, multiple

processors need to be able to share information

with each other. This is accomplished using a

shared-memory environment. The variables,

objects, and data structures in that environment are

accessible to all the processes. The role of a

processor in computation is to carry out the

evaluation and execution rules of a programming

language. In a shared memory model, different

processes may execute different statements, but any

statement can affect the shared environment.

II. RELATED WORK
Some of the earliest work in securing

large-scale distributed file systems, for example

[1], [2], have already employed Kerberos for

performing authentication and enforcing access

control. Kerberos, being based on mostly

symmetric key techniques in its early deployment,

was generally believed to be more suitable for

rather closed, well-connected distributed

environments.

On the other hand, data grids and file

systems such as, OceanStore [3], LegionFS and

FARSITE [7], make use of public key

cryptographic techniques and public key

infrastructure (PKI) to perform cross-domain user

authentication. Independently, SFS, also based on

public key cryptographic techniques, was designed

to enable inter-operability of different key

management schemes. Each user of these systems

is assumed to possess a certified public/private key

pair. However, these systems were not designed

specifically with scalability and parallel access in

mind.

With the increasing deployment of highly

distributed and network-attached storage systems,

subsequent work, such as [8], focussed on scalable

security. Nevertheless, these proposals assumed

that a metadata server shares a group secret key

with each distributed storage device. The group key

is used to produce capabilities in the form of

message authentication codes. However,

compromise of the metadata server or any storage

device allows the adversary to impersonate the

server to any other entities in the file system. This

issue can be alleviated by requiring that each

storage device shares a different secret key with the

metadata server. Nevertheless, such an approach

restricts a capability to authorising I/O on only a

single device, rather than larger groups of blocks or

objects which may reside on multiple storage

devices.

More recent proposals, which adopted a

hybrid symmetric key and asymmetric key method,

allow a capability to span any number of storage

devices, while maintaining a reasonable efficiency-

security. For example, Maat encompasses a set of

protocols that facilitate (i) authenticated key

establishment between clients and storage devices,

(ii) capability issuance and renewal, and (iii)

delegation between two clients. The authenticated

key establishment protocol allows a client to

establish and re-use a shared (session) key with a

storage device. However, Maat and other recent

proposals do not come with rigorous security

analysis.

 As with NFS, authentication in Hadoop

Distributed File System (HDFS) is also based on

Kerberos via GSS-API. Each HDFS client obtains

a TGT that lasts for 10 hours and renewable for 7

days by default; and access control is based on the

Unix-style ACLs. However, HDFS makes use of

the Simple Authentication and Security Layer

(SASL), a framework for providing a structured

interface between connection-oriented protocols

NagamaniAbirami.et. al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 3, (Part -4) March 2016, pp.125-130

127
 www.ijera.com 127 | P a g e

and replaceable mechanisms. In order to improve

the performance of the KDC, the developers of

HDFS chose to use a number of tokens for

communication secured with an RPC digest

scheme. The Hadoop security design makes use of

Delegation Tokens, Job Tokens, and Block Access

Tokens. Each of these tokens is similar in structure

and based on HMAC-SHA1. Delegation Tokens

are used for clients to communicate with the Name

Node in order to gain access to HDFS data; while

Block Access Tokens are used to secure

communication between the Name Node and Data

Nodes and to enforce HDFS file system

permissions. On the other hand, the Job Token is

used to secure communication between the

MapReduce engine Task Tracker and individual

tasks. Note that the RPC digest scheme uses

symmetric encryption and depending upon the

token type, the shared key may be distributed to

hundreds or even thousands of hosts.

III. SYSTEM ANALYSIS
3.1. Existing System

In this work, we investigate the problem

of secure many to-many communications in large-

scale network file systems that support parallel

access to multiple storage devices. That is, we

consider a communication model where there are a

large number of clients accessing multiple remote

and distributed storage devices in parallel.

Particularly, we focus on how to exchange key

materials and establish parallel secure sessions

between the clients and the storage devices in the

parallel Network File System. Our review of the

existing protocol shows that it has a number of

limitations. A metadata server facilitating key

exchange between the clients and the storage

devices has heavy workload that restricts the

scalability of the protocol. The protocol does not

provide forward secrecy. The metadata server

generates itself all the session keys that are used

between the clients and storage devices, and this

inherently leads to key escrow.

3.2 Problem Definition

 Heavy Workload

 Scalability is restricted

 Does not provide forward secrecy

 Key escrow

 Security is low

3.3 Proposed System

In this paper, we propose a variety of

authenticated key exchange protocols that are

designed to address existing issues. We also study

the password-based protocols for authenticated key

exchange (AKE) to resist dictionary attacks.

Password-based protocols for authenticated key

exchange (AKE) are designed to work to resist the

use of passwords drawn from a space so small that

an attacker might well enumerate, off line, all

possible passwords. While several such protocols

have been suggested, the underlying theory has

been lagging. We begin by defining a model for

this problem, one rich enough to deal with

password guessing, forward secrecy, server

compromise, and loss of session keys.

3.4 Advantage in proposed system

 Scalability achieved

 Collusion avoided

 Guarantee the security of past session keys

 Reduced workload

 High Security

 Resist dictionary attacks

IV. SYSTEM DESIGN
Systems design is the process

of defining the architecture, components, modules,

interfaces, and data for a system to satisfy specified

requirements. Systems design could be seen as the

application of systems theory to product

development.

4.2 System Architecture

System architecture is the conceptual

model that defines the structure, behaviour, and

more views of a system. And then the architecture

description is a formal description and

representation of a system, organized in a way that

supports reasoning about the structures and

behaviours of the system.

Fig 4.2 System architecture

NagamaniAbirami.et. al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 3, (Part -4) March 2016, pp.125-130

128
 www.ijera.com 128 | P a g e

V. ALGORITHM

5.1 Encrypted Key- Exchange(EKE) protocol

Encrypted Key Exchange (also known

as EKE) is a family of password-authenticated key

agreement methods described by Steven M.

Bellovin and Michael Merritt. Although several of

the forms of EKE were later found to be flawed,

the surviving, refined, and enhanced forms of EKE

effectively make this the first method to amplify a

shared password into a shared key, where

the shared key may subsequently be used to

provide a zero-knowledge password proof or other

functions. In the most general form of EKE, at least

one party encrypts an ephemeral (one-time) public

key using a password, and sends it to a second

party, who decrypts it and uses it to negotiate a

shared key with the first party.

Augmented methods have the added goal

of ensuring that password verification data stolen

from a server cannot be used by an attacker to

masquerade as the client, unless the attacker first

determines the password.

5.2 Executing the protocol: Formally, a protocol

is just a probabilistic algorithm taking strings to

strings. This algorithm determines how instances of

the principals behave in response to signals

(messages) from their environment.

Our communications model places the

adversary at the centre of the universe. The

adversary A can make queries to any instance: she

has an endless supply of Π
i
U oracles (U ϵ ID and i ϵ

N). There are all together six types of queries that

A can make. The responses to these queries are

specified in Figure 5.2. We now explain the

capability that each kind of query captures.

(1) Send (U, i, M) | This sends message M to

oracle Π
i
U. The oracle computes what the

protocol says to, and sends back the response.

Should the oracle accept, this fact, as well as

the SID and PID, will be made visible to the

adversary. Should the oracle terminate, this too

will be made visible to the adversary. To

initiate the protocol with client A trying to

enter into an exchange with server B the

adversary should send message M = B to an

unused instance of A. A Send-query models

the real-world possibility of an adversary A

causing an instance to come into existence, for

that instance to receive communications

fabricated by A, and for that instance to

respond in the manner prescribed by the

protocol.

Algorithm

 Initialization()

{ h ←R Ω h pwA, pwBi A∈Client,B∈Server ←R

PWh ()

for i ∈ N and U ∈ ID do

 statei U ← ready acci U ← termi U ← usedi U ←

false

 sidi U ← pidi U ← ski U ← false }

Send(U, i, M)

 { usedi U ← true if termi U = true then return

invalid

 hmsg-out, acc, termi U , sid, pid, sk, statei U i ←

 P h (hU, pwU , statei U , Mi)

 if (acc = true and ¬acci U = true) then

 sidi U ← sid; pidi U ← pid; ski U ← sk; acci U ←

true

 return hmsg-out, sid, pid, acc, termi U i }

Reveal(U, i)

 { return ski U }

Execute(A, i, B, j)

 { if A ∈/ Client or B ∈/ Server or usedi A = true or

usedj B = true

 then return invalid

 msg-in ← B

for t ← 1 to ∞ do

 hmsg-out, sid, pid, acc, termAi ←R Send(A, i,

msg-in)

αt ← hmsg-out, sid, pid, acc, termAi

if termA and termB then return hα1, β1, α2, β2, ...,

αti

 hmsg-out, sid, pid, acc, termBi ←R Send(B, j,

msg-in)

 βt ← hmsg-out, sid, pid, acc, termBi

if termA and termB then return hα1, β1, α2, β2, ...,

αt, βti }

Oracle(M)

 { return h(M) }

(2) Reveal (U, i) - If oracle Π
i
U has accepted,

holding some session key sk, then this query

returns sk to the adversary. This query models the

idea (going back to Denning and Sacco) that loss of

a session key shouldn't be damaging to other

sessions. A session key might be lost for a variety

of reasons, including hacking, cryptanalysis, and

the prescribed-release of that session key when the

session is torn down.

(3) Corrupt (U, pw) - The adversary obtains pwU

and the states of all instances of U. This query

models the possibility of subverting a principal by,

for example, witnessing a user type in his

password, installing a “Trojan horse" on his

machine, or hacking into a machine. Obviously this

is a very damaging type of query. Allowing it lets

us deal with forward secrecy and the extent of

damage which can be done by breaking into a

server. A Corrupt query directed against a client U

may also be used to replace the value of pwB[U]

NagamaniAbirami.et. al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 3, (Part -4) March 2016, pp.125-130

129
 www.ijera.com 129 | P a g e

used by server B. This is the role of the second

argument to Corrupt. Including this capability

allows a dishonest client A to try to defeat protocol

aims by installing a strange string as a server B's

transformed password pwB [A].

(4) Execute (A, i, B, j) - Assuming that client

oracle Π
i
A and server oracle Π

j
B have not been used;

this call carries out an honest execution of the

protocol between these oracles, returning a

transcript of that execution. This query may at first

seem useless since, using Send queries; the

adversary already has the ability to carry out an

honest execution between two oracles. Yet the

query is essential for properly dealing with

dictionary attacks. In modeling such attacks the

adversary should be granted access to plenty of

honest executions, since collecting these involves

just passive eavesdropping. The adversary is

comparatively constrained in its ability to actively

manipulate °ows to the principals, since bogus

flows can be auditied and punative measures taken

should there be too many.

(5) Test (U, i) - If Π
i
U has accepted, holding a

session key sk, then the following happens. A coin

b is flipped. If it lands b = 0, then sk is returned to

the adversary. If it lands b = 1, then a random

session key, drawn from the distribution from

which session keys are supposed to be drawn, is

returned. This type of query is only used to

measure adversarial success it does not correspond

to any actual adversarial ability. You should think

of the adversary asking this query just once.

(6) Oracle (M) - Finally, we give the adversary

oracle access to a function h, which is selected at

random from some probability space Ώ. As already

remarked, not only the adversary, but the protocol

and the LL-key generator may depend on h. The

choice of ­ determines if we are Woking in the

standard model, ideal-hash model, or ideal-cipher

model.

VI. PERFORMANCE EVALUATION
6.1 Communication overhead

Assuming fresh session keys are used to

secure communications between the client and

multiple storage devices, clearly all our protocols

have reduced bandwidth requirements. This is

because during each access request, the client does

not need to fetch the required authentication token

set from M. Hence, the reduction in bandwidth

consumption is approximately the size of n

authentication tokens. The total delay can be

calculated as

Where n is the number of messages sent; l is the

latency in seconds; s is the total size of all

messages; and b is the bandwidth in bytes per

second.

6.2 Key Storage

We note that the key storage requirements

for Kerberos pNFS and all our described protocols

are roughly similar from the client’s perspective.

For each access request, the client needs to store N

or N + 1 key materials (either in the form of

symmetric keys or Diffie-Hellman components) in

their internal states. However, the key storage

requirements for each storage device is higher in

pNFS-AKE-III since the storage device has to store

some key material for each client in their internal

state. This is in contrast to Kerberos-pNFS, pNFS-

AKE-I and pNFS-AKE-II that are not required to

maintain any client key information.

6.3 Security

First, whenever it happens we have a way

to \embed" instances of the DH problem into the

protocol so that adversarial success leads to our

obtaining a solution to the DH problem. Second,

absence of the bad event leads to an inability of the

adversary to obtain information about the password

at a better rate than eliminating one password per

reveal or test query to a manipulated oracle.

Bounding the probability of the bad event involves

a \simulation" argument as we attempt to \plant"

DH problem instances in the protocol. Bounding

adversarial success under the assumption the bad

event does not happen is an information-theoretic

argument. Indeed, the difficulty of the proof is in

choosing the bad event so that one can split the

analysis into an information-theoretic component

and a computational component in this way.

VII. CONCLUSION

We proposed password-based protocols

for authenticated key exchange (AKE) to resist

dictionary attacks for parallel network file system

(pNFS). Password-based protocols for

authenticated key exchange (AKE) are designed to

work despite the use of passwords drawn from a

space so small that an adversary might well

enumerate, off line, all possible passwords. While

several such protocols have been suggested, the

underlying theory has been lagging. We begin by

defining a model for this problem, to approach

password guessing, forward secrecy, server

compromise, and loss of session keys.

NagamaniAbirami.et. al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 3, (Part -4) March 2016, pp.125-130

130
 www.ijera.com 130 | P a g e

REFERENCE

[1]. J.H. Howard, M.L. Kazar, S.G. Menees,

D.A. Nichols, M. Satyanarayanan, R.N.

Sidebotham, and M.J. West. Scale and

performance in a distributed file system.

ACM Transactions on Computer Systems

(TOCS), 6(1):51–81. ACM Press, Feb

1988.

[2]. G.A. Gibson, D.F. Nagle, K. Amiri, J.

Butler, F.W. Chang, H. Gobioff, C.

Hardin, E. Riedel, D. Rochberg, and J.

Zelenka. A costeffective, high-bandwidth

storage architecture. ACM SIGPLAN

Notices, 33(11):92–103. ACM Press, Nov

1998.

[3]. J. Kubiatowicz, D. Bindel, Y. Chen, S.E.

Czerwinski, P.R. Eaton, D. Geels, R.

Gummadi, S.C. Rhea, H. Weatherspoon,

W. Weimer, C. Wells, and B.Y. Zhao.

OceanStore: An architecture for global-

scale persistent storage. In Proceedings of

the 9th International Conference on

Architectural Support for Programming

Languages and Operating Systems

(ASPLOS), pages 190–201. ACM Press,

Nov 2000.

[4]. Hadoop Wiki.

http://wiki.apache.org/hadoop/PoweredBy

[5]. F. Hupfeld, T. Cortes, B. Kolbeck, J.

Stender, E. Focht, M. Hess, J. Malo, J.

Marti, and E. Cesario. The XtreemFS

architecture – a case for objectbased file

systems in grids. Concurrency and

Computation: Practice and Experience

(CCPE), 20(17):2049–2060. Wiley, Dec

2008.

[6]. Hadoop distributed file system.

http://hadoop.apache.org/hdfs/.

[7]. A. Adya, W.J. Bolosky, M. Castro, G.

Cermak, R. Chaiken, J.R. Douceur, J.

Howell, J.R. Lorch, M. Theimer, and R.

Wattenhofer. FARSITE: Federated,

available, and reliable storage for an

incompletely trusted environment. In

Proceedings of the 5th Symposium on

Operating System Design and

Implementation (OSDI). USENIX

Association, Dec 2002.

[8]. M.K. Aguilera, M. Ji, M. Lillibridge, J.

MacCormick, E. Oertli, D.G. Andersen,

M. Burrows, T. Mann, and C.A. Thekkath.

Blocklevel security for network-attached

disks. In Proceedings of the 2
nd

International Conference on File and

Storage Technologies (FAST). USENIX

Association, Mar 2003.

[9]. M. Armbrust, A. Fox, R. Griffith, A.D.

Joseph, R.H. Katz, A. Konwinski, G. Lee,

D.A. Patterson, A. Rabkin, I. Stoica, and

M. Zaharia. A view of cloud computing.

Communications of the ACM, 53(4):50–

58. ACM Press, Apr 2010.

[10]. Amazon simple storage service (Amazon

S3). http://aws.amazon.com/ s3/.

[11]. M. Bellare, D. Pointcheval, and P.

Rogaway. Authenticated key exchange

secure against dictionary attacks. In

Advances in Cryptology – Proceedings of

EUROCRYPT, pages 139–155. Springer

LNCS 1807, May 2000.

[12]. D. Boneh, C. Gentry, and B. Waters.

Collusion resistant broadcast encryption

with short ciphertexts and private keys. In

Advances in Cryptology – Proceedings of

CRYPTO, pages 258–275. Springer

LNCS 3621, Aug 2005.

