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ABSTRACT 
A parallel file system is a type of distributed file system that distributes file data across multiple servers and 

provides for concurrent access by multiple tasks of a parallel application. In many to many communications or 

multiple tasks, key establishments are a major problem in parallel file system. So we propose a variety of 

authenticated key exchange protocols that are designed to address the above issue. In this paper, we also study 

the password-based protocols for authenticated key exchange (AKE) to resist dictionary attacks. Password-based 

protocols for authenticated key exchange (AKE) are designed to work to resist the use of passwords drawn from 

a space so small that attacker might well specify, off line, all possible passwords. While many such protocols 

have been suggested, the elemental theory has been lagging. We commence by interpreting a model for this 

problem, to approach password guessing, forward secrecy, server compromise, and loss of session keys. 

 

I. INTRODUCTION 
 Both parallel and distributed systems can 

be defined as a collection of processing elements 

that communicate and cooperate to achieve a 

common goal. Processor technology using 

parallelism at all levels: within each CPU by 

executing multiple instructions from different 

threads of control simultaneously (simultaneous 

multithreading); by introducing multiple cores in a 

single chip (chip multiprocessors); by using multiple 

chips to form multiprocessors; or via multiple 

networked nodes to form a cluster; making parallel 

systems increasingly ubiquitous. 

Simultaneously, advances in networking 

technology have created an explosion of distributed 

applications, making distributed computing an 

inherent fabric in our day-to-day lives. This course 

will focus on the principles of parallel and 

distributed systems and the implementation and 

performance issues associated with them. We will 

examine programming  models/interfaces to 

parallel and distributed computing, interprocess 

communication, synchronization and consistency 

models, fault tolerance and reliability, distributed 

process management, parallel machine 

architectures, parallel program optimization, and 

the interaction of the compiler, run-time, and 

machine architecture. 

Difference between distributed system and 

parallel system are given below: 

 Distributed Operating systems are also referred 

to as Loosely Coupled systems whereas 

parallel processing systems are referred to as 

loosely coupled systems. 

  A Loosely coupled system is one in which the 

processors do not share memory and each 

processor has its own local memory whereas in 

a tightly coupled system there is a single 

system wide primary memory shared by all the 

processors. 

 The processors of distributed operating 

systems can be placed far away from each 

other to cover a wider geographic area which 

is not the case with parallel processing 

systems.  

 The no. of processors that can be usefully 

deployed is very small in a parallel processing 

operating system whereas for a distributed 

operating system a larger no. of processors can 

be usefully deployed. 

 

1.1 Distributed Computing 

A distributed system is a network of 

autonomous computers that communicate with 

each other in order to achieve a goal. The 

computers in a distributed system are independent 

and do not physically share memory or processors. 

They communicate with each other 

using messages, pieces of information transferred 

from one computer to another over a network. 

Messages can communicate many things: 

computers can tell other computers to execute a 

procedures with particular arguments, they can 

send and receive packets of data, or send signals 

that tell other computers to behave a certain way. 
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Computers in a distributed system can have 

different roles. A computer's role depends on the 

goal of the system and the computer's own 

hardware and software properties. There are two 

predominant ways of organizing computers in a 

distributed system. The first is the client-server 

architecture, and the second is the peer-to-peer 

architecture. 

 

1.2 Parallel Computing 

Computers get faster and faster every 

year. In 1965, Intel co-founder Gordon Moore 

made a prediction about how much faster 

computers would get with time. Based on only five 

data points, he extrapolated that the number of 

transistors that could inexpensively be fit onto a 

chip would double every two years. Almost 50 

years later, his prediction, now called Moore's law, 

remains startlingly accurate. 

Despite this explosion in speed, computers 

aren't able to keep up with the scale of data 

becoming available. By some estimates, advances 

in gene sequencing technology will make gene-

sequence data available more quickly than 

processors are getting faster. In other words, for 

genetic data, computers are become less and less 

able to cope with the scale of processing problems 

each year, even though the computers themselves 

are getting faster. 

To circumvent physical and mechanical 

constraints on individual processor speed, 

manufacturers are turning to another solution: 

multiple processors. If two, or three, or more 

processors are available, then many programs can 

be executed more quickly. While one processor is 

doing one aspect of some computation, others can 

work on another. All of them can share the same 

data, but the work will proceed in parallel. 

In order to be able to work together, multiple 

processors need to be able to share information 

with each other. This is accomplished using a 

shared-memory environment. The variables, 

objects, and data structures in that environment are 

accessible to all the processes. The role of a 

processor in computation is to carry out the 

evaluation and execution rules of a programming 

language. In a shared memory model, different 

processes may execute different statements, but any 

statement can affect the shared environment. 

 

II. RELATED WORK 
Some of the earliest work in securing 

large-scale distributed file systems, for example 

[1], [2], have already employed Kerberos for 

performing authentication and enforcing access 

control. Kerberos, being based on mostly 

symmetric key techniques in its early deployment, 

was generally believed to be more suitable for 

rather closed, well-connected distributed 

environments.  

On the other hand, data grids and file 

systems such as, OceanStore [3], LegionFS  and 

FARSITE [7], make use of public key 

cryptographic techniques and public key 

infrastructure (PKI) to perform cross-domain user 

authentication. Independently, SFS, also based on 

public key cryptographic techniques, was designed 

to enable inter-operability of different key 

management schemes. Each user of these systems 

is assumed to possess a certified public/private key 

pair. However, these systems were not designed 

specifically with scalability and parallel access in 

mind.  

With the increasing deployment of highly 

distributed and network-attached storage systems, 

subsequent work, such as [8], focussed on scalable 

security. Nevertheless, these proposals assumed 

that a metadata server shares a group secret key 

with each distributed storage device. The group key 

is used to produce capabilities in the form of 

message authentication codes. However, 

compromise of the metadata server or any storage 

device allows the adversary to impersonate the 

server to any other entities in the file system. This 

issue can be alleviated by requiring that each 

storage device shares a different secret key with the 

metadata server. Nevertheless, such an approach 

restricts a capability to authorising I/O on only a 

single device, rather than larger groups of blocks or 

objects which may reside on multiple storage 

devices. 

More recent proposals, which adopted a 

hybrid symmetric key and asymmetric key method, 

allow a capability to span any number of storage 

devices, while maintaining a reasonable efficiency-

security. For example, Maat encompasses a set of 

protocols that facilitate (i) authenticated key 

establishment between clients and storage devices, 

(ii) capability issuance and renewal, and (iii) 

delegation between two clients. The authenticated 

key establishment protocol allows a client to 

establish and re-use a shared (session) key with a 

storage device. However, Maat and other recent 

proposals do not come with rigorous security 

analysis. 

 As with NFS, authentication in Hadoop 

Distributed File System (HDFS) is also based on 

Kerberos via GSS-API. Each HDFS client obtains 

a TGT that lasts for 10 hours and renewable for 7 

days by default; and access control is based on the 

Unix-style ACLs. However, HDFS makes use of 

the Simple Authentication and Security Layer 

(SASL), a framework for providing a structured 

interface between connection-oriented protocols 



NagamaniAbirami.et. al. Int. Journal of Engineering Research and Application            www.ijera.com 

ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -4) March 2016, pp.125-130 

127 
 www.ijera.com                                                                                                                              127 | P a g e  

and replaceable mechanisms. In order to improve 

the performance of the KDC, the developers of 

HDFS chose to use a number of tokens for 

communication secured with an RPC digest 

scheme. The Hadoop security design makes use of 

Delegation Tokens, Job Tokens, and Block Access 

Tokens. Each of these tokens is similar in structure 

and based on HMAC-SHA1. Delegation Tokens 

are used for clients to communicate with the Name 

Node in order to gain access to HDFS data; while 

Block Access Tokens are used to secure 

communication between the Name Node and Data 

Nodes and to enforce HDFS file system 

permissions. On the other hand, the Job Token is 

used to secure communication between the 

MapReduce engine Task Tracker and individual 

tasks. Note that the RPC digest scheme uses 

symmetric encryption and depending upon the 

token type, the shared key may be distributed to 

hundreds or even thousands of hosts. 

 

III. SYSTEM ANALYSIS 
3.1. Existing System 

In this work, we investigate the problem 

of secure many to-many communications in large-

scale network file systems that support parallel 

access to multiple storage devices. That is, we 

consider a communication model where there are a 

large number of clients accessing multiple remote 

and distributed storage devices in parallel. 

Particularly, we focus on how to exchange key 

materials and establish parallel secure sessions 

between the clients and the storage devices in the 

parallel Network File System. Our review of the 

existing protocol shows that it has a number of 

limitations. A metadata server facilitating key 

exchange between the clients and the storage 

devices has heavy workload that restricts the 

scalability of the protocol. The protocol does not 

provide forward secrecy. The metadata server 

generates itself all the session keys that are used 

between the clients and storage devices, and this 

inherently leads to key escrow.  

 

3.2 Problem Definition 

 Heavy Workload 

 Scalability is restricted 

 Does not provide forward secrecy 

 Key escrow 

 Security is low 

 

3.3 Proposed System 

In this paper, we propose a variety of 

authenticated key exchange protocols that are 

designed to address existing issues. We also study 

the password-based protocols for authenticated key 

exchange (AKE) to resist dictionary attacks. 

Password-based protocols for authenticated key 

exchange (AKE) are designed to work to resist the 

use of passwords drawn from a space so small that 

an attacker might well enumerate, off line, all 

possible passwords. While several such protocols 

have been suggested, the underlying theory has 

been lagging. We begin by defining a model for 

this problem, one rich enough to deal with 

password guessing, forward secrecy, server 

compromise, and loss of session keys. 

 

3.4 Advantage in proposed system 

 Scalability achieved 

 Collusion avoided 

 Guarantee the security of past session keys 

 Reduced workload 

 High Security 

 Resist dictionary attacks 

 

IV. SYSTEM DESIGN 
Systems design is the process 

of defining the architecture, components, modules, 

interfaces, and data for a system to satisfy specified 

requirements. Systems design could be seen as the 

application of systems theory to product 

development. 

 

4.2 System Architecture 

System architecture is the conceptual 

model that defines the structure, behaviour, and 

more views of a system. And then the  architecture 

description is a formal description and 

representation of a system, organized in a way that 

supports reasoning about the structures and 

behaviours of the system. 

 

 
Fig 4.2 System architecture 
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V. ALGORITHM 

5.1 Encrypted Key- Exchange(EKE) protocol 

Encrypted Key Exchange (also known 

as EKE) is a family of password-authenticated key 

agreement methods described by Steven M. 

Bellovin and Michael Merritt. Although several of 

the forms of EKE were later found to be flawed, 

the surviving, refined, and enhanced forms of EKE 

effectively make this the first method to amplify a 

shared password into a shared key, where 

the shared key may subsequently be used to 

provide a zero-knowledge password proof or other 

functions. In the most general form of EKE, at least 

one party encrypts an ephemeral (one-time) public 

key using a password, and sends it to a second 

party, who decrypts it and uses it to negotiate a 

shared key with the first party.  

Augmented methods have the added goal 

of ensuring that password verification data stolen 

from a server cannot be used by an attacker to 

masquerade as the client, unless the attacker first 

determines the password. 

 

5.2 Executing the protocol: Formally, a protocol 

is just a probabilistic algorithm taking strings to 

strings. This algorithm determines how instances of 

the principals behave in response to signals 

(messages) from their environment. 

Our communications model places the 

adversary at the centre of the universe. The 

adversary A can make queries to any instance: she 

has an endless supply of Π
i
U oracles (U ϵ ID and i ϵ 

N). There are all together six types of queries that 

A can make. The responses to these queries are 

specified in Figure 5.2. We now explain the 

capability that each kind of query captures. 

(1) Send (U, i, M) | This sends message M to 

oracle Π
i
U. The oracle computes what the 

protocol says to, and sends back the response. 

Should the oracle accept, this fact, as well as 

the SID and PID, will be made visible to the 

adversary. Should the oracle terminate, this too 

will be made visible to the adversary. To 

initiate the protocol with client A trying to 

enter into an exchange with server B the 

adversary should send message M = B to an 

unused instance of A. A Send-query models 

the real-world possibility of an adversary A 

causing an instance to come into existence, for 

that instance to receive communications 

fabricated by A, and for that instance to 

respond in the manner prescribed by the 

protocol.  

 

Algorithm 

 Initialization()  

{ h ←R Ω h pwA, pwBi A∈Client,B∈Server ←R 

PWh ()  

for i ∈ N and U ∈ ID do 

 statei U ← ready acci U ← termi U ← usedi U ← 

false 

 sidi U ← pidi U ← ski U ← false } 

Send(U, i, M) 

 { usedi U ← true if termi U = true then return 

invalid 

 hmsg-out, acc, termi U , sid, pid, sk, statei U i ← 

 P h (hU, pwU , statei U , Mi) 

 if (acc = true and ¬acci U = true) then 

 sidi U ← sid; pidi U ← pid; ski U ← sk; acci U ← 

true 

 return hmsg-out, sid, pid, acc, termi U i } 

Reveal(U, i) 

 { return ski U }  

Execute(A, i, B, j) 

 { if A ∈/ Client or B ∈/ Server or usedi A = true or 

usedj B = true 

 then return invalid 

 msg-in ← B  

for t ← 1 to ∞ do 

 hmsg-out, sid, pid, acc, termAi ←R Send(A, i, 

msg-in)  

αt ← hmsg-out, sid, pid, acc, termAi  

if termA and termB then return hα1, β1, α2, β2, ..., 

αti 

 hmsg-out, sid, pid, acc, termBi ←R Send(B, j, 

msg-in) 

 βt ← hmsg-out, sid, pid, acc, termBi  

if termA and termB then return hα1, β1, α2, β2, ..., 

αt, βti } 

Oracle(M) 

 { return h(M) } 

 

(2) Reveal (U, i) - If oracle Π
i
U has accepted, 

holding some session key sk, then this query 

returns sk to the adversary. This query models the 

idea (going back to Denning and Sacco) that loss of 

a session key shouldn't be damaging to other 

sessions. A session key might be lost for a variety 

of reasons, including hacking, cryptanalysis, and 

the prescribed-release of that session key when the 

session is torn down. 

 

(3) Corrupt (U, pw) - The adversary obtains pwU 

and the states of all instances of U. This query 

models the possibility of subverting a principal by, 

for example, witnessing a user type in his 

password, installing a “Trojan horse" on his 

machine, or hacking into a machine. Obviously this 

is a very damaging type of query. Allowing it lets 

us deal with forward secrecy and the extent of 

damage which can be done by breaking into a 

server. A Corrupt query directed against a client U 

may also be used to replace the value of pwB[U] 
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used by server B. This is the role of the second 

argument to Corrupt. Including this capability 

allows a dishonest client A to try to defeat protocol 

aims by installing a strange string as a server B's 

transformed password pwB [A]. 

 

(4) Execute (A, i, B, j) - Assuming that client 

oracle Π
i
A and server oracle Π

j
B have not been used; 

this call carries out an honest execution of the 

protocol between these oracles, returning a 

transcript of that execution. This query may at first 

seem useless since, using Send queries; the 

adversary already has the ability to carry out an 

honest execution between two oracles. Yet the 

query is essential for properly dealing with 

dictionary attacks. In modeling such attacks the 

adversary should be granted access to plenty of 

honest executions, since collecting these involves 

just passive eavesdropping. The adversary is 

comparatively constrained in its ability to actively 

manipulate °ows to the principals, since bogus 

flows can be auditied and punative measures taken 

should there be too many. 

 

(5) Test (U, i) - If Π
i
U  has accepted, holding a 

session key sk, then the following happens. A coin 

b is flipped. If it lands b = 0, then sk is returned to 

the adversary. If it lands b = 1, then a random 

session key, drawn from the distribution from 

which session keys are supposed to be drawn, is 

returned. This type of query is only used to 

measure adversarial success it does not correspond 

to any actual adversarial ability. You should think 

of the adversary asking this query just once.  

 

(6) Oracle (M) - Finally, we give the adversary 

oracle access to a function h, which is selected at 

random from some probability space Ώ. As already 

remarked, not only the adversary, but the protocol 

and the LL-key generator may depend on h. The 

choice of ­ determines if we are Woking in the 

standard model, ideal-hash model, or ideal-cipher 

model. 

 

VI. PERFORMANCE EVALUATION 
6.1 Communication overhead 

Assuming fresh session keys are used to 

secure communications between the client and 

multiple storage devices, clearly all our protocols 

have reduced bandwidth requirements. This is 

because during each access request, the client does 

not need to fetch the required authentication token 

set from M. Hence, the reduction in bandwidth 

consumption is approximately the size of n 

authentication tokens. The total delay can be 

calculated as 

 
Where n is the number of messages sent; l is the 

latency in seconds; s  is the total size of all 

messages; and b is the bandwidth in bytes per 

second. 

 

6.2 Key Storage 

We note that the key storage requirements 

for Kerberos pNFS and all our described protocols 

are roughly similar from the client’s perspective. 

For each access request, the client needs to store N 

or N + 1 key materials (either in the form of 

symmetric keys or Diffie-Hellman components) in 

their internal states. However, the key storage 

requirements for each storage device is higher in 

pNFS-AKE-III since the storage device has to store 

some key material for each client in their internal 

state. This is in contrast to Kerberos-pNFS, pNFS-

AKE-I and pNFS-AKE-II that are not required to 

maintain any client key information. 

 

6.3 Security 

First, whenever it happens we have a way 

to \embed" instances of the DH problem into the 

protocol so that adversarial success leads to our 

obtaining a solution to the DH problem. Second, 

absence of the bad event leads to an inability of the 

adversary to obtain information about the password 

at a better rate than eliminating one password per 

reveal or test query to a manipulated oracle. 

Bounding the probability of the bad event involves 

a \simulation" argument as we attempt to \plant" 

DH problem instances in the protocol. Bounding 

adversarial success under the assumption the bad 

event does not happen is an information-theoretic 

argument. Indeed, the difficulty of the proof is in 

choosing the bad event so that one can split the 

analysis into an information-theoretic component 

and a computational component in this way. 

 

VII. CONCLUSION 

We proposed password-based protocols 

for authenticated key exchange (AKE) to resist 

dictionary attacks for parallel network file system 

(pNFS). Password-based protocols for 

authenticated key exchange (AKE) are designed to 

work despite the use of passwords drawn from a 

space so small that an adversary might well 

enumerate, off line, all possible passwords. While 

several such protocols have been suggested, the 

underlying theory has been lagging. We begin by 

defining a model for this problem, to approach 

password guessing, forward secrecy, server 

compromise, and loss of session keys. 
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